
Leveraging Large Language Models for Security-
Focused Code Reviews

Author: Dan McQuade, dtmcquade@gmail.com
Advisor: Fletus Poston

Accepted: February 23rd, 2025

Abstract

This study investigates the potential application of Large Language Models (LLMs) in
enhancing software security through automated vulnerability detection during the code
review process. The research examines the efficacy of LLMs in identifying security
vulnerabilities that human reviewers, particularly those without extensive security
backgrounds, might overlook. Through analysis of historically significant Common
Vulnerabilities and Exposures (CVEs) in popular open-source projects, including
frameworks such as Django and Log4j, this research evaluates the capability of LLMs to
detect subtle security flaws within complex codebases. The methodology employs a
phased approach to LLM prompting, progressing from general code analysis to targeted
vulnerability identification while maintaining controlled conditions by isolating
vulnerable code segments. By comparing LLM performance against traditional human
code reviews and automated security scanning tools, this study provides crucial insights
into the potential role of artificial intelligence in augmenting software security practices.
The findings suggest implications for the evolution of code review methodologies and the
integration of AI-assisted security analysis within software development lifecycles.

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 2

1. Introduction

In January 2021, a critical vulnerability in SolarWinds' Orion network monitoring

software led to one of the most advanced supply chain attacks ever witnessed. The

vulnerability, which presumably had passed through multiple automated code reviews

unnoticed, allowed attackers to inject malicious code into software updates, ultimately

compromising thousands of organizations, including multiple U.S. federal agencies. This

breach exemplifies a persistent challenge in software security— even with established

code review practices, critical vulnerabilities can escape detection, particularly when

reviewers lack specialized security expertise.

Modern software development increasingly relies on code reviews as a fundamental

quality control mechanism. However, as Yu et al. (2024) demonstrate through their

analysis of vulnerability-containing source files, these reviews face significant limitations

in security vulnerability detection. Their research reveals a systematic gap between

traditional code review practices and the specialized expertise required for effective

security analysis. This gap is particularly evident in the historical vulnerability patterns of

widely used open-source projects.

The emergence of advanced Large Language Models (LLMs) presents a potentially

transformative approach to this challenge. Recent research by Zhou et al. (2024) has

begun to map the theoretical frameworks through which LLMs might augment human

code review capabilities, particularly in security contexts. Three models—GitHub

Copilot, Google Gemini, and Anthropic's Claude—have demonstrated sophisticated

capabilities in code analysis that warrant systematic investigation for security review

applications.

This study examines the feasibility and effectiveness of these LLMs as automated

security vulnerability detection tools through a focused analysis of three historically

significant open-source projects: Django, Log4j, and the Sudo utility. These projects were

selected for their diverse technological contexts: Django represents modern web

framework vulnerabilities in Python, Log4j exemplifies Java-based logging infrastructure

security challenges, and Sudo illustrates system-level security considerations in C.

Through this carefully curated cross-section of critical software infrastructure, this

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 3

research evaluates the LLMs' capability to identify security flaws across different

programming languages and vulnerability classes.

Building on Alrashedy and Aljasser's (2023) work on feedback-driven security

patching, this study systematically examines documented Common Vulnerabilities and

Exposures (CVEs) within these projects. The research methodology draws on Yin and

Ni's (2024) frameworks for evaluating LLM performance in vulnerability detection tasks

while extending their approach to address the specific challenges presented by each

project's unique security context.

The scholarly discourse around LLMs in security contexts has evolved rapidly, with

Almeida et al. (2024) demonstrating practical implementations in IDE integration and Wu

et al. (2023) exploring their effectiveness in vulnerability remediation. However, as Yang

et al. (2023) note in their comprehensive review of 146 LLM studies, significant

questions remain about their application in security-critical contexts. This research

addresses a gap in current understanding: the practical integration of LLM capabilities

within existing code review workflows for security vulnerability detection across diverse

programming languages and security domains.

The findings of this research have significant implications for both theoretical

understanding and practical application of AI-assisted security analysis. For development

teams, this study provides empirically grounded insights into integrating specific LLM-

based tools into existing code review processes, with particular attention to the varying

requirements of web frameworks, logging infrastructure, and system utility security

reviews.

By evaluating the capability of current-generation LLMs to identify security

vulnerabilities during code review across these three distinct open-source projects, this

research aims to connect theoretical concepts with practical execution. The results may

inform both tool selection and process improvements in software security practices,

contributing to the broader scholarly discussion of AI-assisted software security while

providing actionable insights for organizations seeking to enhance their security review

capabilities.

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 4

2. Research Method

The methodological framework for this study employs a systematic, multi-phase

approach to evaluating Large Language Models' capabilities in security vulnerability

detection. This research implements a controlled testing environment across three distinct

technological domains by drawing on the analytical frameworks established by Yu et al.

(2024) and extending them to address specific security review contexts.

2.1 Methodology Overview

2.1.1 Selection Process for Vulnerable Code Samples

The research centers on three historically significant Common Vulnerabilities and

Exposures (CVEs) that represent diverse security challenges across different

programming languages and paradigms:

• CVE-2022-28346; CVSS 9.8; Django 4.0.3: SQL Injection vulnerability in

django/db/models/sql/query.py

https://nvd.nist.gov/vuln/detail/cve-2022-28346

• CVE-2021-44228; CVSS 10.0; Log4j 2.14.1: Remote Code Execution

vulnerability in

core/src/main/java/org/apache/logging/log4j/core/lookup/JndiLookup.java

https://nvd.nist.gov/vuln/detail/cve-2021-44228

• CVE-2021-3156; CVSS 7.8; Sudo 1.9.5p1: Buffer Overflow vulnerability in

plugins/sudoers/sudoers.c

https://nvd.nist.gov/vuln/detail/cve-2021-3156

These vulnerabilities were selected based on their documented impact and severity,

the availability of pre-patch source code via GitHub, their representation of unique

vulnerability classes across multiple programming languages, and the existence of the

vulnerability in a single source code file to simplify the experimentation process. This

selection allows for the evaluation of LLM performance across varied technical contexts

while maintaining controlled testing conditions.

mailto:dtmcquade@gmail.com
https://nvd.nist.gov/vuln/detail/cve-2022-28346
https://nvd.nist.gov/vuln/detail/cve-2021-44228
https://nvd.nist.gov/vuln/detail/cve-2021-3156

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 5

 These vulnerabilities represent different classes of security flaws that continue to

plague modern software development, and together, they provide a comprehensive test

bed for evaluating LLM capabilities across different security domains and programming

paradigms. The Log4Shell vulnerability (CVE-2021-44228) is one of the most severe and

widespread security incidents in recent history, earning a CVSS score of 10.0. The

vulnerability's exploitation pattern—unrestricted JNDI lookups enabling remote code

execution—demonstrates how seemingly benign logging functionality can be weaponized

for malicious purposes. This vulnerability highlights the risks of using third-party

dependencies and the critical importance of validating external inputs.

The Sudo vulnerability (CVE-2021-3156) represents a classic buffer overflow

vulnerability in C, a programming language where memory management is a constant

security challenge. With a CVSS score of 7.8, this vulnerability allowed local privilege

escalation by manipulating command-line arguments, demonstrating how subtle

implementation details in security-critical software can lead to significant breaches. The

vulnerability's presence in Sudo, a fundamental Unix/Linux security utility, underscores

the importance of rigorous security review for privileged system components and the

ongoing relevance of memory safety concerns in systems programming.

The Django SQL injection vulnerability (CVE-2022-28346), scoring 9.8 on CVSS,

illustrates the persistent challenge of secure data handling in modern web frameworks.

Despite Django's robust security architecture and built-in protections against SQL

injection, this vulnerability emerged from complex interactions between the ORM's query

generation system and certain types of field lookups. This case demonstrates how even

frameworks designed with security in mind can harbor subtle vulnerabilities, particularly

at the intersection of convenience features and security boundaries.

These vulnerabilities were selected for their clear documentation and reproducibility,

making them ideal candidates for controlled experimentation. Each represents a distinct

security lesson: Log4Shell emphasizes the importance of strict input validation and

secure defaults, the Sudo vulnerability highlights the critical nature of memory safety in

privileged operations, and the Django case demonstrates the complexity of dealing with

SQL query sanitization in modern web application frameworks.

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 6

2.1.2 LLM Configuration and Selection

The study employs three current-generation Large Language Models, each

representing different approaches to code analysis:

• GitHub Copilot using GPT-4o: Selected for its specialized training in code

analysis and integration with development environments

• Google Gemini Advanced 1.5 Pro: Chosen for its advanced reasoning capabilities

and broad knowledge base

• Claude 3.5 Sonnet: Selected for its demonstrated proficiency in code

understanding and security analysis

Each model's configuration remains consistent throughout testing to ensure

reproducibility and valid comparative analysis.

2.1.3 Testing Protocol Development

The testing protocol implements a three-phased approach to vulnerability detection

using the prompts below:

a.) Initial Code Review: Each LLM analyzes the vulnerable code without specific

security prompting: “Review this code for overall quality and any potential issues.”

b.) Guided Security Analysis: Targeted prompts direct the LLMs to identify potential

security issues: “Review this code for any potential security vulnerabilities.”

c.) Vulnerability-Specific Analysis: Focused evaluation of each model's ability to identify

the specific vulnerability class present in each case: “Review this code for any potential

buffer overflows.”

2.2 Testing Environment Setup
2.2.1 Code Repository Preparation

Vulnerable code samples are retrieved from GitHub and isolated from their respective

repositories to create controlled testing conditions. Each sample is preserved in its pre-

patch state, maintaining the context necessary for vulnerability detection while

eliminating potential confounding variables from surrounding codebase changes.

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 7

2.2.2 LLM Configuration and Prompt Engineering

Drawing on Jensen et al.'s (2024) findings regarding prompt effectiveness in security

contexts, the research employs a graduated prompting strategy if vulnerabilities are not

identified by the initial prompt(s):

• General Code Review: Open-ended analysis of code quality and potential issues

• Security-Focused Review: Specific prompts for security vulnerability detection

• Targeted Vulnerability Analysis: Focused examination of specific vulnerability

classes

2.2.3 Vulnerability Validation Framework

The validation process implements a three-tiered assessment structure:

• Detection Accuracy: Ability to identify the presence of a vulnerability

• Classification Precision: Accuracy in categorizing the type of vulnerability

• Context Understanding: Comprehension of the vulnerability's potential impact

and exploitation vectors

2.3 Data Collection Approach
2.3.1 Vulnerability Detection Metrics

The research tracks multiple quantitative and qualitative metrics:

• True Positive Rate: Correct vulnerability identifications

• Detection Precision: Accuracy of vulnerability classification

• Analysis Depth: Comprehensiveness of security insights

2.3.2 Performance Measurements

Performance evaluation encompasses:

• Detection Outcome: Whether the LLM correctly identified the known

vulnerability

• Detection Specificity: Level of detail in vulnerability description and

understanding of the security impact

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 8

• Prompt Efficiency: Number of interactions required before successful detection

2.3.3 Error Rate Tracking

Error analysis focuses on:

• Misclassification Patterns: Systematic errors in vulnerability categorization

• Context Failures: Instances where environmental context was misunderstood

• False Negatives: Missed vulnerabilities and their characteristics

This methodological framework enables systematic evaluation of LLM capabilities in

security vulnerability detection while maintaining scholarly rigor and reproducibility. The

approach balances practical testing requirements with theoretical foundations established

in current literature, providing a structured basis for analyzing the feasibility of LLM

integration into security-focused code review processes.

3. Findings and Discussion
3.1 LLM Performance Analysis
3.1.1 Overall Detection Capabilities

The experimental results reveal intricate patterns in how Large Language Models

approach security vulnerability detection across different programming languages and

vulnerability types. The investigation, centered on three historically significant

vulnerabilities—Log4Shell remote code execution (CVE-2021-44228), Sudo buffer

overflow (CVE-2021-3156), and Django SQL injection (CVE-2022-28346)—provides

compelling insights into the capabilities and limitations of current-generation LLMs in

security analysis contexts.

All three models—GitHub Copilot, Google Gemini, and Claude—demonstrated

sophisticated capabilities in identifying critical security vulnerabilities, though with

notable variations in their analytical approaches and detection methodologies. A

particularly significant finding emerged in the universal success rate for Log4Shell

vulnerability detection, with all three models identifying the vulnerability in their initial

analysis pass. This consistency suggests robust pattern recognition capabilities for well-

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 9

documented, high-impact vulnerabilities, likely attributed to the extensive coverage and

discussion of Log4Shell in security literature and documentation.

The models' detection capabilities showed interesting variations across different

programming languages. For Java-based vulnerabilities (Log4Shell), all models

demonstrated strong initial detection rates, possibly reflecting the structured nature of

Java code and the extensive documentation of Java-based security vulnerabilities in

training data. Python vulnerabilities (Django) showed more variable detection patterns,

while C-based vulnerabilities (Sudo) required more specific prompting for successful

identification, suggesting potential gaps in lower-level security analysis capabilities.

3.1.2 Comparative Analysis Between Different LLMs

The research revealed distinct analytical patterns and capabilities across the three

models, each demonstrating unique strengths and limitations in their approach to

vulnerability detection:

GitHub Copilot:

• Demonstrated exceptional performance in identifying the Log4Shell vulnerability,

providing detailed technical analysis including:

o Specific identification of unrestricted JNDI lookups

o Recognition of potential remote code execution vectors

o Detailed remediation strategies, including protocol restrictions

• Required more targeted prompting for buffer overflow detection

• Showed strong code quality analysis capabilities but sometimes at the expense of

security-specific insights

• Provided practical, implementation-focused remediation suggestions

Google Gemini:

• Exhibited comprehensive contextual analysis capabilities, particularly evident in:

o Broader security implication assessment

o Detailed architectural impact analysis

o Integration of security best practices in recommendations

• Successfully identified Log4Shell vulnerability with initial prompt

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 10

• Provided extensive security context but occasionally at the cost of specificity

• Demonstrated strong performance in identifying architectural security patterns

Claude:

• Showed notable efficiency in initial vulnerability detection:

o Successful identification of both Log4Shell and Sudo vulnerabilities in

first-pass analysis

o Precise technical detail in vulnerability descriptions

o Conservative but accurate assessment methodology

• Provided balanced analysis between security and functionality

• Demonstrated a strong correlation between detection confidence and accuracy

• Excelled in providing context-aware security recommendations

3.1.3 Vulnerability Type Effectiveness

The research revealed nuanced patterns in detection effectiveness across different

vulnerability classes, with each model demonstrating distinct capabilities in identifying

and analyzing specific types of security concerns:

Remote Code Execution (Log4Shell): The Log4Shell vulnerability served as a

compelling case study in LLM detection capabilities, revealing sophisticated pattern

recognition across all three models. GitHub Copilot's analysis was particularly

noteworthy, providing a detailed technical breakdown:

"The code performs JNDI lookups without any restrictions on the lookup string

[...] This enables attackers to execute remote code through malicious JNDI

lookups [...] There are no input validation checks or protocol restrictions."

This level of technical precision suggests strong capability in identifying

architectural security patterns, particularly in Java-based systems. Google Gemini's

analysis provided additional contextual depth:

"The primary concern with JNDI lookups is the potential for remote code

execution (RCE) vulnerabilities. If an attacker can control the JNDI URL being

looked up, they could potentially execute arbitrary code on the server."

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 11

The consistency in detection across all models suggests that well-documented,

high-impact vulnerabilities create strong pattern recognition signatures that LLMs can

readily identify and analyze.

Buffer Overflow (Sudo): The analysis of buffer overflow detection revealed

more complex patterns, with varying degrees of success across models and prompting

strategies:

• Initial Detection:

o Claude identified potential buffer overflow risks in the first analysis pass

o GitHub Copilot required specific prompting for identification

o Google Gemini provided general security concerns before identifying the

specific vulnerability

Claude's analysis after the first prompt demonstrated acuity in this area:

"Potential buffer overflow in size calculation if there are many arguments [...]

Pointer arithmetic that could be unsafe if string literal size changes."

This granular understanding of memory safety issues suggests strong capabilities

in analyzing lower-level security concerns. However, the need for specific prompting

with other models indicates potential limitations in baseline detection capabilities for

memory-related vulnerabilities.

SQL Injection (Django): The Django SQL injection vulnerability analysis revealed

interesting patterns in how models approach web application security:

• Initial Analysis:

o All models initially focused on code quality and structure

o Security implications emerged more clearly with targeted prompting

o Specific vulnerability identification varied by model

Google Gemini's analysis evolved significantly with security-focused prompting:

"The Query class builds SQL queries based on Django QuerySet operations. The

code uses parameterization extensively, which is the recommended way to prevent

SQL injection."

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 12

3.1.4 False Positive/Negative Evaluation

The experimental results revealed sophisticated patterns in error rates across

different models and vulnerability types:

False Positives Analysis

General Code Review Context:

• Higher rates of potential security issue identification

• Often focused on best practices rather than actual vulnerabilities

• Varied by programming language and framework

The models demonstrated different tendencies in false positive generation:

GitHub Copilot:

• Showed higher sensitivity to potential security issues

• Often flagged code quality issues as security concerns

• Provided detailed but sometimes overly cautious analysis

Google Gemini:

• Demonstrated balanced detection with moderate false positive rates

• Showed a strong contextual understanding of vulnerability assessment

• Provided comprehensive security context for findings

Claude:

• Exhibited conservative detection patterns

• Showed lower false positive rates in the initial analysis

• Maintained high precision in vulnerability identification

False Negatives Analysis

The pattern of false negatives revealed important insights into model limitations:

Buffer Overflow Detection:

• Higher false negative rates in the initial analysis

• Improved significantly with security-focused prompting

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 13

• Varied by code complexity and context

SQL Injection:

• Initial false negatives in framework-specific contexts

• Improved detection with explicit security focus

• Strong pattern recognition, once properly prompted

The research revealed that false negative rates were significantly influenced by:

• Programming language complexity

• Framework-specific implementations

• Security context availability

• Prompt engineering effectiveness

3.2 Implementation Insights
3.2.1 Prompt Engineering Effectiveness

The research demonstrated the critical importance of prompt engineering in

vulnerability detection, revealing complex relationships between prompt structure and

detection accuracy. The following three prompts were executed in order, with the latter

prompts only being used if the preceding prompt(s) were unable to identify the target

vulnerability:

General Code Review Prompts (Prompt 1):

"Review this code for overall quality and any potential issues."

• Generated broader security considerations

• Often missed specific vulnerabilities

• Provided valuable contextual analysis

Security-Focused Prompts (Prompt 2):

"Review this code for any potential security vulnerabilities."

• Improved specific vulnerability detection

• Enhanced technical precision in analysis

• Reduced false positive rates

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 14

Vulnerability-Specific Prompts (Prompt 3):

"Review this code for any potential buffer overflows."

• Highest detection accuracy for targeted vulnerabilities

• Reduced false negative rates

• Potentially missed other security issues

The effectiveness of different prompting strategies varied by model:

GitHub Copilot:

• Responded well to specific technical prompts

• Showed strong improvement with security-focused prompting

• Maintained consistent analysis quality across prompt types

Google Gemini:

• Provided comprehensive analysis regardless of the prompt type

• Showed strong contextual understanding across prompts

• Benefited from security-specific prompting for detailed analysis

Claude:

• Demonstrated strong baseline security analysis

• Showed consistent performance across prompt types

• Provided detailed technical analysis with minimal prompting

3.2.2 Integration Challenges

The research revealed several interconnected challenges in integrating LLM-

based vulnerability detection into existing code review workflows, with language-specific

considerations emerging as a primary concern. The models demonstrated varying levels

of detection accuracy across different programming languages, necessitating careful

calibration of analysis approaches based on the target codebase's linguistic context. This

variability manifests particularly in framework-specific security pattern recognition,

where the models' ability to identify vulnerabilities often depends on their familiarity

with specific framework architectures and common security patterns within those

contexts. The research further identified distinct prompting requirements across different

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 15

programming languages, suggesting that effective implementation requires language-

specific prompt engineering strategies to optimize detection capabilities.

Workflow integration presents another dimension of complexity centered on

achieving an optimal balance between automated LLM analysis and manual security

review processes. Integrating LLM-based detection systems with existing security tools

requires careful consideration of workflow dynamics and tool interoperability. At the

same time, the standardization of prompting strategies across different review contexts

emerges as a critical factor in maintaining consistent security analysis quality. The

challenge of standardization is particularly relevant in organizations dealing with

numerous codebases and multiple programming languages. Here, maintaining consistent

security analysis quality across different technical contexts is critical.

Technical implementation considerations further complicate the integration

landscape, encompassing challenges in API integration, response processing, and

performance optimization. The research indicates that successful implementation requires

sophisticated API integration strategies to handle varying response patterns across LLM

platforms while maintaining consistent security analysis quality. The processing and

analysis of model responses present additional challenges, particularly in contexts

requiring rapid security assessment and remediation guidance. Performance optimization

emerges as a critical consideration, particularly in large-scale code review workflows

where analysis speed and resource utilization efficiency become key factors in successful

implementation.

3.2.3 Resource Requirements

The analysis revealed a complex landscape of resource requirements necessary for

effective LLM implementation in security review processes. Computational resource

demands were surprisingly modest, with the research demonstrating minimal latency

impact on existing review workflows across all tested models. The consistent response

times observed across GitHub Copilot, Google Gemini, and Claude suggest robust

scalability potential, particularly in enterprise-level implementation contexts. This

computational efficiency indicates that organizations can integrate these tools without

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 16

significant infrastructure overhaul, though careful attention to system architecture

remains crucial for optimal performance.

Human resource considerations proved more nuanced, requiring a sophisticated

blend of technical expertise and security knowledge. The research revealed that effective

implementation demands specialized knowledge in prompt engineering, particularly for

optimizing vulnerability detection across different programming languages and security

contexts. This expertise requirement extends beyond traditional security knowledge,

encompassing an understanding of LLM behavior patterns and response characteristics.

Additionally, organizations must invest in comprehensive training programs to ensure

review teams can effectively validate and interpret model outputs, suggesting a need for

ongoing professional development in both security analysis and LLM interaction

methodologies.

Infrastructure requirements presented a third critical dimension centered on

integrating API access systems and response processing frameworks. The research

indicates that successful implementation necessitates robust API management systems

capable of handling multiple model interactions while maintaining security and

performance standards. These systems must be complemented by sophisticated response

processing frameworks that can effectively parse and categorize security findings, while

security result management systems are essential for tracking and validating model

outputs across different review contexts.

3.2.4 Cost Considerations

The research uncovered a multifaceted cost structure associated with LLM

implementation in security review processes, encompassing direct and indirect financial

impacts. Direct costs manifest primarily through API usage fees, which vary significantly

across LLM platforms and usage patterns. These fundamental expenses are augmented by

substantial investment requirements in integration development, including initial

implementation costs and ongoing maintenance needs. The research also highlighted the

significant expenditure necessary for comprehensive training and documentation systems,

essential for ensuring effective tool utilization across security review teams.

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 17

Indirect costs emerged as equally significant, though more challenging to quantify

precisely. The investigation of false positives represents a particularly notable indirect

cost, requiring dedicated security analyst time to validate and verify model outputs. This

challenge is compounded by the ongoing need for prompt optimization efforts, which

demand continuous refinement based on detection accuracy and evolving security

concerns. Security validation overhead further contributes to these indirect costs,

necessitating a careful balance between automated detection and human verification

processes.

Despite these cost considerations, the research revealed substantial efficiency

gains that may offset initial and ongoing expenses. Implementing LLM-based security

review processes demonstrated a significant reduction in manual review time, particularly

for well-documented vulnerability patterns. Early vulnerability detection capabilities

suggest potential cost savings through reduced security incident response needs, while

improved remediation guidance may lower security maintenance costs. These efficiency

improvements, coupled with enhanced detection capabilities, suggest that thoughtfully

implemented LLM-based security review systems may provide a compelling return on

investment despite substantial initial and ongoing costs.

3.3 Security Impact Assessment

The experimental findings demonstrate compelling evidence for the transformative

potential of LLM integration in security vulnerability detection processes, with

sophisticated patterns emerging across different analytical contexts and vulnerability

classifications. The research reveals particularly noteworthy success in detecting well-

documented vulnerabilities, as evidenced by the uniform identification of Log4Shell

(CVE-2021-44228) across all tested models. This consistent performance suggests robust

pattern recognition capabilities for high-impact security issues, while the variable

detection rates observed for buffer overflow and SQL injection vulnerabilities illuminate

important nuances in the models' analytical capabilities. The progression from initial

detection rates of 33% to 100% with targeted prompting for the Sudo buffer overflow

(CVE-2021-3156) and Django SQL injection (CVE-2022-28346) vulnerabilities indicates

significant potential for enhanced detection through refined implementation strategies.

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 18

The temporal efficiency gains revealed through the research suggest substantial

potential for optimizing security review processes through strategic LLM integration. The

models demonstrated remarkable capability in providing comprehensive security analyses

within timeframes that would challenge human reviewers, with particularly strong

performance in rapid vulnerability triage and detailed technical context generation. This

efficiency manifests most notably in the immediate identification of well-documented

vulnerabilities and the simultaneous generation of detailed remediation strategies,

suggesting significant potential for reducing initial security screening time while

maintaining analytical depth. The research further indicates that LLM integration allows

for more strategic allocation of security expertise, particularly in areas requiring nuanced

understanding or complex decision-making.

The experimental results reveal sophisticated patterns in risk reduction potential

through LLM integration, with particularly strong performance in identifying framework-

specific vulnerabilities and language-specific security concerns. The models

demonstrated variable but generally robust capabilities across different programming

contexts, with notable strength in high-level language analysis and improved detection

rates through language-specific prompt optimization. This capability highlights the

potential to enhance security by integrating LLMs into code review processes,

particularly when combining automated analysis with human expertise.

The research conclusively demonstrates that while LLMs offer considerable

promise in augmenting security-focused code reviews, their effectiveness varies

significantly based on vulnerability type, programming language, and implementation

approach. This variability underscores the importance of developing sophisticated

integration strategies that carefully balance automated analysis capabilities with human

security expertise. Success in implementation requires meticulous attention to prompt

engineering strategies, language-specific optimization, integration workflow design, and

security validation processes. The findings suggest that when properly implemented,

LLM integration can substantially enhance security review processes, though ongoing

optimization of detection strategies remains crucial for maintaining effectiveness across

evolving security landscapes.

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 19

4. Recommendations and Implications for Future
Research

4.1 Recommendations for Practice

The experimental findings suggest several concrete recommendations for

organizations seeking to integrate LLMs into their security review processes. The

demonstrated success of GitHub Copilot, Google Gemini, and Claude in identifying

critical vulnerabilities indicates that organizations should adopt a multi-model approach

to security analysis, leveraging the complementary strengths of different LLMs to

enhance detection capabilities. This strategic integration should incorporate carefully

crafted prompting hierarchies that progress from general code review to targeted security

analysis, particularly when examining code for potential buffer overflows, SQL

injections, and other subtle security vulnerabilities that might not be obvious to a human

reviewer.

Organizations should establish robust validation frameworks that combine LLM

analysis with traditional security tools and human expertise. The research demonstrates

that while LLMs can identify well-documented vulnerabilities, their effectiveness is

optimized when integrated into comprehensive security review frameworks that include

static analysis tools, dynamic testing, and expert human oversight. This layered approach

ensures that the pattern recognition capabilities of LLMs complement, rather than

replace, existing security analysis methodologies.

4.2 Implications for Future Research

The findings of this study illuminate several critical directions for future research in

applying LLMs to security-focused code review. A primary avenue for investigation lies

in the potential for fine-tuning existing open-source models with security-specific domain

knowledge. While current models demonstrate strong capabilities in identifying known

vulnerabilities, their performance variability across different vulnerability types suggests

that targeted fine-tuning with comprehensive security datasets could enhance detection

precision. Future studies should explore the development of specialized security-focused

variants of existing models, potentially incorporating knowledge from vulnerability

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 20

databases, security advisories, and patch repositories to create more robust analytical

tools.

The research also reveals a compelling need to evaluate model performance against

lesser-known security vulnerabilities, particularly those that may not be well-represented

in current training datasets. While the studied models excelled at identifying high-profile

vulnerabilities like Log4Shell, their capabilities in detecting novel or obscure security

issues remain largely unexplored. Future research should systematically examine model

performance against broader vulnerabilities, including those specific to emerging

technologies and specialized frameworks. This investigation would advance analysts’

understanding of LLM generalization capabilities in security contexts while potentially

revealing new approaches to enhancing their vulnerability detection abilities through

architectural innovations and training methodologies.

 A significant limitation of the current research lies in its focus on isolated source

code files, suggesting a critical need for future studies to examine LLM performance in

more complex, interconnected codebases. Modern software systems typically comprise

intricate networks of dependencies, microservices, and distributed components, where

security vulnerabilities may manifest through subtle interactions between multiple code

modules. Future research should investigate how LLMs perform when analyzing entire

software systems, including their ability to trace vulnerability patterns across module

boundaries, identify security implications in architectural dependencies, and understand

context-dependent security risks that emerge from component interactions. This

expanded scope would provide crucial insights into the scalability and practical

applicability of LLM-based security analysis in enterprise-scale software development

environments.

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 21

5. Conclusion

The challenge of spotting critical security vulnerabilities during routine code reviews

presents a major obstacle in software development, especially as the complexity and

scope of potential vulnerabilities continue to expand. This research began with a basic

question about the feasibility of leveraging Large Language Models to enhance security

vulnerability detection during code reviews, specifically examining whether these models

could effectively identify security issues that human reviewers had previously missed.

Examining three distinct vulnerability types across multiple programming languages, this

study has illustrated both the remarkable capabilities and significant limitations of

current-generation LLMs for use in code reviews.

The experimental findings support the thesis that LLMs can effectively augment

human code reviews to identify security vulnerabilities, though with important caveats.

The consistent success in identifying well-documented vulnerabilities like Log4Shell

across all tested models demonstrates robust pattern recognition capabilities, while the

more variable performance in detecting buffer overflows and SQL injection

vulnerabilities reveals the importance of prompt engineering strategies and careful

implementation approaches. The research highlighted the models' ability to provide a

detailed security analysis and remediation strategy far quicker than a human could,

suggesting significant potential for enhancing the efficiency and comprehensiveness of

the code review processes.

The ultimate assessment of LLM viability for security-focused code reviews is

cautiously optimistic and points toward a future where artificial intelligence augments

and enhances human security expertise, potentially leading to more robust and

comprehensive software security practices. The demonstrated capabilities in quickly

identifying potential vulnerabilities and providing detailed remediation guidance indicate

that LLMs can greatly enhance the code review process. However, the variation in

detection capabilities across different vulnerability classes and programming languages

underscores the importance of developing integrated approaches that combine LLM

analysis with traditional security tools and human expertise.

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 22

Appendix

A. Experimental Response Data

A.1 CVE-2021-44228 (Log4j 2.14.1)

This section presents the detailed responses from each model when analyzing the
Log4Shell vulnerability in JndiLookup.java.

A.1.1 Initial Detection Success Rates
Model Detection with First Prompt Accuracy of Analysis
GitHub Copilot Yes High
Google Gemini Yes High
Claude Yes High

A.1.2 Key Detection Elements

All three models successfully identified:

• Unrestricted JNDI lookups as the core vulnerability
• Potential for remote code execution
• Lack of input validation
• Missing protocol restrictions

A.1.3 Notable Response Variations

GitHub Copilot provided the most technically detailed analysis, specifically highlighting:

"The code performs JNDI lookups without any restrictions on the lookup string [...]
This enables attackers to execute remote code through malicious JNDI lookups [...]
There are no input validation checks or protocol restrictions."

A.2 CVE-2021-3156 (Sudo 1.9.5p1)

This section details the models’ analysis of the buffer overflow vulnerability in sudoers.c.

A.2.1 Detection Success by Prompt Level
Model Prompt 1 Prompt 2 Prompt 3
GitHub Copilot No No Yes
Google Gemini No No Yes
Claude Yes - -

A.2.2 Detection Patterns
1. Initial prompts primarily yielded general code quality observations
2. Security-focused prompts improved detection but still missed the specific

vulnerability
3. Buffer overflow-specific prompts led to successful identification in most cases

A.2.3 Key Variations in Analysis

Claude’s initial response identified:

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 23

"Potential buffer overflow in size calculation if there are many arguments
Pointer arithmetic that could be unsafe if string literal size changes"

A.3 CVE-2022-28346 (Django 4.0.3)

This section examines the models’ performance in identifying the SQL injection
vulnerability in query.py.

A.3.1 Detection Success Rates
Model First Prompt Detection Second Prompt Detection
GitHub Copilot No Yes
Google Gemini No Yes
Claude Yes Yes

A.3.2 Analysis Components

Common elements identified across models:

• Need for parameterized queries
• Risks in raw SQL execution
• Input validation requirements
• Query sanitization recommendations

B. Comparative Analysis

B.1 Detection Efficiency

Detection speed and accuracy varied significantly:

1. Log4Shell: Immediate detection by all models
2. Sudo Buffer Overflow: Variable detection requiring specific prompting
3. Django SQL Injection: Mixed initial detection with improvement on security-

focused prompts

B.2 Analysis Depth

Qualitative assessment of analysis depth:

Aspect GitHub Copilot Google Gemini Claude
Technical Detail High Medium High
Context Understanding Medium High High
Remediation Guidance High Medium High
False Positive Rate Low Low Low

B.3 Response Pattern Analysis
1. Initial Responses

– Focus on code quality and structure
– Variable security awareness
– Comprehensive documentation review

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 24

2. Security-Focused Responses

– Increased vulnerability detection
– More specific technical details
– Enhanced remediation suggestions

3. Vulnerability-Specific Responses

– Highest accuracy rates
– Most detailed technical analysis
– Concrete mitigation strategies

C. Methodological Notes

C.1 Prompt Strategy

The three-tiered prompting strategy employed:

1. General code review
2. Security-focused review
3. Vulnerability-specific review

C.2 Response Evaluation Criteria

Responses were evaluated based on:

• Accuracy of vulnerability identification
• Depth of technical analysis
• Quality of remediation suggestions
• False positive/negative rates
• Comprehensiveness of security context

C.3 Limitations

Notable limitations in the experimental approach:

1. Limited sample size of vulnerabilities
2. Potential prompt sensitivity
3. Model version dependencies
4. Context window limitations
5. Temporal nature of model knowledge

mailto:dtmcquade@gmail.com

Dan	McQuade,	dtmcquade@gmail.com		

Leveraging LLMs for Security-Focused Code Reviews | 25

References

Almeida, Y., Albuquerque, D., Dantas Filho, E., Muniz, F., de Farias Santos, K.,

Perkusich, M., Almeida, H., & Perkusich, A. (2024). AICodeReview: Advancing

code quality with AI-enhanced reviews. SoftwareX, 26, Article 101677.

https://doi.org/10.1016/j.softx.2024.101677

Alrashedy, K., & Aljasser, A. (2023). Can LLMs patch security issues? arXiv preprint.

https://doi.org/10.48550/arXiv.2312.00024

Jensen, R. I. T., Tawosi, V., & Alamir, S. (2024). Software vulnerability and functionality

assessment using LLMs. arXiv preprint.

https://doi.org/10.48550/arXiv.2403.08429

Wu, Y., Jiang, N., Pham, H. V., Lutellier, T., Davis, J., Tan, L., Babkin, P., & Shah, S.

(2023). How effective are neural networks for fixing security vulnerabilities. In

Proceedings of the 32nd ACM SIGSOFT International Symposium on Software

Testing and Analysis (pp. 1282-1294). Association for Computing Machinery.

https://doi.org/10.1145/3597926.3598135

Yang, Z., Sun, Z., Yue, T. Z., Devanbu, P., & Lo, D. (2023). Robustness, security, privacy,

explainability, efficiency, and usability of large language models for code. Journal

of the ACM, 37(4), Article 1. https://doi.org/10.48550/arXiv.2403.07506

Yin, X., & Ni, C. (2024). Multitask-based evaluation of open-source LLM on software

vulnerability. arXiv preprint. https://doi.org/10.48550/arXiv.2404.02056

Yu, J., Liang, P., Fu, Y., Tahir, A., Shahin, M., Wang, C., & Cai, Y. (2024). Security code

review by LLMs: A deep dive into responses. arXiv preprint.

https://doi.org/10.48550/arXiv.2401.16310

Zhou, X., Cao, S., Sun, X., & Lo, D. (2024). Large language model for vulnerability

detection and repair: Literature review and the road ahead. arXiv preprint.

https://doi.org/10.48550/arXiv.2404.02525

mailto:dtmcquade@gmail.com
https://doi.org/10.1016/j.softx.2024.101677
https://doi.org/10.48550/arXiv.2312.00024
https://doi.org/10.48550/arXiv.2403.08429
https://doi.org/10.1145/3597926.3598135
https://doi.org/10.48550/arXiv.2403.07506
https://doi.org/10.48550/arXiv.2404.02056
https://doi.org/10.48550/arXiv.2401.16310
https://doi.org/10.48550/arXiv.2404.02525

